Type-Confusion Security

Anonymous authors

Abstract—Type systems are a lightweight way to obtain as-
surance that code enjoys useful properties, including security
properties. But in decentralized settings such as smart contracts
and federated distributed systems, malicious adversaries may
not obey the type system. They may attempt to confuse trusted
code by supplying values that do not behave as their adver-
tised type claims. We show that well-known attacks such as
Confused Deputy Attacks (CDAs) and reentrancy attacks can
be understood as instances of this kind of type confusion. In
this paper, we show how to obtain the guarantees of a type
system despite the presence of malicious type confusion, using a
novel mechanism that combines static and dynamic information
flow checking. We give an information-flow-typed core calculus
with a run-time enforcement mechanism, and formally prove
the security of this mechanism as a hyperproperty-preserving
simulation between ill-typed and well-typed programs. With this
mechanism, programmers can write code while pretending that
adversaries are constrained to obey the type system. The security
properties enforced by this ideal system continue to hold in the
real system where adversaries lie about types.

I. INTRODUCTION

Many programming languages include mechanisms to en-
force isolation and regulate security-critical resources. Some
languages (such as JavaScript) rely primarily on run-time
mechanisms to enforce security; others (such as Java and Rust)
rely heavily on static checking. Even low-level languages such
as JVM and WebAssembly rely on static, compile-time check-
ing to enforce security guarantees. Statically checking code for
security is an attractive approach to language-based security:
of course, it can reduce run-time overhead, but further, a wider
range of security properties can be enforced [1]. For example,
noninterference [2]] can be enforced by a static type system.

Unfortunately, purely static enforcement is insufficient in
decentralized systems, where untrusted parties need not obey
the restrictions imposed by static analysis. Examples of such
systems are smart contracts and federated distributed systems
with cross-domain information sharing. In such settings, at-
tackers may not respect the typing discipline, and may send
values not conforming to types expected by trusted parties,
causing type confusion.

Moreover, when types themselves are used to express and
enforce security policies, type confusion can lead to security
vulnerabilities that are particularly challenging to understand
and mitigate. For example, we show that confused deputy
attacks (CDA) 3] can be understood as an instance of type
confusion where the type system is used to express access
control policies; similarly, reentrancy attacks [4] can be un-
derstood as a form of type confusion.

A major contribution of this paper is a demonstration of how
to enforce type-based security in decentralized systems where
adversaries may lie about types and security policies. We

give a simple, practical enforcement mechanism that combines
static and dynamic checks to provably make type confusion
harmless.

To show that our mechanism works, we propose the first
formal definition of type-confusion security, inspired by the
real-ideal paradigm [5]. In the real world, attackers may lie
about types, but in the ideal world, a purely static typing
discipline is enforced and attackers respect this discipline. The
core result is a proof that with the proposed mechanisms, all
real-world executions can be simulated in the ideal world.
This result means that programmers can write secure code
while assuming a simpler ideal world where the attacker is
constrained by types, even though their code really interacts
with a stronger adversary who ignores the type system.

The key insight behind our novel enforcement mechanism
is to leverage information flow control (IFC). IFC is typically
associated with enforcing confidentiality, but it can also be
used to enforce integrity, determining which data and control
to trust. Some previous languages and systems [6} [7] have used
IFC types to enforce security in decentralized environments
where adversaries can lie about types, but they have not
fully prevented dangerous type confusion. This paper proposes
simple mechanisms that fill the gap by going beyond standard
IFC.

The rest of the paper is structured as follows.

o §I1] introduces a motivating example and key intuitions.

o §IMprovides background for information flow control and
gives high-level formal definitions of type confusion.

. defines core calculi A, A}, to describe the ideal and
real worlds.

o §V|formalizes and proves type-confusion security.

o §VI| applies our formal results to security proofs.

. discusses related work, and concludes.

II. MOTIVATION
A. Confused Deputy Attacks

The Confused Deputy Attack (CDA) [3] is a classic—but
still not well-understood—security vulnerability in which the
attacker tricks a trusted party (called the deputy) into misusing
its authority. CDAs have been long described in the litera-
ture [3] and mitigation mechanisms exist in systems where a
centralized, trusted runtime is available [8]], but they continue
to cause costly security breaches in modern, decentralized
settings such as blockchain smart contracts [9, [10} [L1]].

The classic example of a CDA [3]] is shown in Figure [I]
Here, a (paid) compiler service is the confused deputy (a
modern equivalent is a cloud-based ML training service). In an
honest execution, the user calls the compiler with the source

User.main() :=

User.main() :=

2 Compiler.run{U}(src, outwriter) 2 Compiler.run{U}(src, outwriter)
Attacker.main() := 1| Attacker.main() :=

2 Compiler.run{U}(src, billwriter) 2 Compiler.run{U}(src.first(), reenter)

3

1| Compiler.run{U}(code, outwriter:{U}) := i Attagti;;g:::;ﬁgggj{%(OUt) =

2 out, FOSt := compile{T}(code) 6 Compiler.run{U}(src.next(), reenter)

3 outwriter{U}(out)

4 billwriter{T}(cost)

Fig. 1: The classic Confused Deputy Attack (CDA) example,
annotated with information-flow labels. For simplicity, only
function types and function call sites are annotated with pc
(control flow) labels.

code and an output file writer; after compiling the source
code, the compiler writes compiled code to the output file
and records the fee in the billing file. However, an attacker
may trick the compiler by passing the billing file itself as the
output file, causing the trusted billing file to be overwritten
with compiler output.

A traditional defense against CDAs is capability sys-
tems [12]], in which a trusted entity (such as an operating
system) ensures that resources like data and pointers can
only be accessed through unforgeable capability tokens. A
capability system could require that the compiler possess
explicit, distinct capabilities for writing to the bill writer and
the output file writer, and that the write operation requires
sufficiently powerful capabilities to be passed to it. The call
to the output file writer should only be passed the capability
for the output file—which would not provide enough authority
to write to the bill writer. There are two limitations to this
approach. First, nothing forces the programmer to select the
correct capability for each call, so mistakes are easily still
possible. Further, capabilities must be threaded through the
computation, so care is required to ensure that they are not
accidentally leaked to the attacker; one proposed defense is
run-time taint tracking Rajani et al. [S8].

To address the limitations of capability systems, we propose
a language-based solution in which function types include
security annotations. In fig. all functions are annotated
with security labels (in braces), where T represents “trusted”
and U represents “untrusted”. This annotation, the external pc
(program counter) label, governs the contexts in which each
function may be called. A function labeled T may only be
called from trusted contexts, but a function labeled U may
be called from anywhere. We can think of this label as a
form of static access control, but unlike in capability systems,
information-flow analysis is used to ensure that these security
labels are consistent and cannot be chosen arbitrarily.

For example, this consistency implies a subtyping rela-
tionship on function types: a U-labeled function is a subtype
of a T-labeled function pointer because it can be used in
more contexts. However, the reverse is not true, even though
trusted information can be used where untrusted information is

Compiler.run{U«qT}(code, outwriter:{UqU}) :=
out, cost := compile{T}(code)
outwriter{U}(out)
billwriter{T}(cost)

AW N~

Fig. 2: Reentrancy Attacker against the compiler example. In
addition to external pc, functions are annotated by a bounding
label that bounds the maximum effect during the function
execution.

expected. The reason is that function subtyping is contravariant
in argument types [13].

This static discipline prevents CDA in an ideal system where
all parties respect the typing rules: the attacker is ill-typed
because it calls the compiler by passing a T-labeled func-
tion argument (billwriter) to U-labeled function parameter
(outwriter).

However, an attacker who does not respect static typing
can mount the original attack; in the real world, run-time
checking is needed to prevent CDAs. Perhaps surprisingly,
CDAs can be prevented with a simple run-time check based
on information flow control. Our new defense is that the
caller sends its (statically known) current control-flow label
to the callee, and the callee verifies that the caller’s control-
flow label matches its own label. For example, in fig. |1} the
attacker passes billwriter as the argument to the compiler. At
line 3 of the compiler code, the compiler notifies the callee
billwriter that it is being called from a U-labeled context.
As the callee billwriter expects calls only from T-labeled
contexts, it rejects the call at run time.

B. Reentrancy Attack

CDAs are control-flow attacks that exploit unexpected con-
trol flow. However, with the typing discipline seen so far,
other control-flow attacks remain possible. Figure [2| shows an
example of a reentrancy attack [[14], where the attacker causes
the deputy to be called again before it finishes its first call.
Consider the attack shown in fig.[2] where the attacker provides
a malicious output file writer that calls back to the compiler
after writing the output file. This attack turns Compiler.run
and Attacker.reenter into mutually recursive functions that
infinitely compile code without billing the user.

As observed by Cecchetti et al. [4]], a reentrancy attack
happens when functions rely on invariants that do not hold as
a result of unexpected control flow. In the compiler example,
the output writer is expected to execute at an untrusted level,
but its reentrant call to Compiler.run happens at a trusted level.

In general, insecure reentrancy happens when the control-
flow level moves from a trusted level to an untrusted level
and back again to trusted before the first trusted call returns.
Such control-flow patterns only happen when calling an auto-
endorsing function [4]]: a function whose external pc label
is less trusted than the level at which its code executes.
Such functions are essential for expressiveness in decentralized
systems. The insight of Cecchetti et al. [4] is that reentrancy
attacks, at their core, are caused by unexpected control-flow
endorsement via auto-endorsing functions.

We can statically enforce secure reentrancy by annotat-
ing functions with a bounding label that upper-bounds the
level of effects during function execution. A function with
an U bounding label never endorses its control flow above
U (subtype); one with a T bounding label may call auto-
endorsing functions freely (supertype). For example, above, all
functions are annotated with a bounding label. The function
Compiler.run is an auto-endorsing function because it endorses
control flow from U to T, with bounding label equal to T.
Although Attacker.reenter is not auto-endorsing, its bound-
ing label is also T because it calls Compiler.run; unlike the
external pc label, which governs access to the function, the
bounding label enforces reentrancy statically by constraining
the maximum effect of the function.

Once the bounding label is added to function signatures, the
body of the reentrancy attacker becomes ill-typed—it calls the
compiler with an ill-typed argument labeled {u«T}. Thus, the
reentrancy attack is also a form of type confusion.

To prevent reentrancy in the real world with ill-typed
attackers, we add a second run-time mechanism, adapting the
dynamic lock system of Cecchetti et al. [4]: when a function is
called, it locks its own level of control flow until it returns. Any
auto-endorsing call that endorses control flow up to or beyond
the lock is rejected. In the compiler example, Compiler.run
locks the T level when it is called. Compiler.run then calls
an untrusted function Attacker.reenter, which calls back to
Compiler.run before the first call to it returns. The dynamic
lock prevents this second, reentrant call.

C. Type Confusion and IFC background

In both of the aforementioned attacks, the real world at-
tacker uses type-confused function pointers to cause unin-
tended control flow in trusted code. In the case of CDA, the
adversary tricks a trusted party into authorizing an unsafe
call using a type-confused function pointer; for reentrancy,
the adversary bypasses the invariant on control-flow integrity
using a type-confused function pointer. Our key observation is
that in security-typed systems, dangerous type confusion arises
when trusted code calls type-confused function values. Some
classic CDA examples might seem not to fit this description,
since they involve writing to references guarded by access
control policies. However, a reference can be viewed as a pair
of functions: a getter and a setter; with this view, the classic
examples can also be understood as involving type-confused
functions.

Supertype

Subtype AN

Fig. 3: The subtyping lattice of well-formed function types.
The static type of untrusted pointer variables from the attacker
have the rightmost type (U AN U)y (blue). Type confusion
happens when the attacker uses pointers with its supertype
(red). Type confusing the output type is not harmful because
of covariance.

Of course, attackers may also lie about base types—the
input—output types of functions, and the types of data. How-
ever, this base-type confusion is not as challenging as security-
type confusion. Base-type confusion can be prevented from
compromising security by ensuring that values of the wrong
type are treated deterministically as values of the expected
type. discusses this simple defense in more detail.

1) IFC Label Model: We assume a security-typed language
in which each type 7 includes an information-flow label that
governs the use of values of that type. In this paper, we
adopt the label model of [15], where the principals p € P of
the decentralized system generate a lattice of security labels.
Given a type 7, we write |bl(7) to denote the label component
of the type.

The flows-to order T represents the direction of secure
information flow. For simplicity we focus only on enforcing
integrity, so {1 C /5 when that ¢; is at least as trusted as /5.
The bottom element | represents the most trusted label, and
the top element T represents the most untrusted label. Join U
and meet M represent the least upper bound and the greatest
lower bound of two labels respectively.

2) IFC Function Signatures: Function declarations are an-
. . . PC;IPCyop

notated with function types with the form 7, —— 7.
Here, 7; is the input type and 7, is the output type. pc,, is
the access control label, which we refer to as the external
pc (program counter); pcy,, is the bounding label, which we
also refer to as the top pc. We believe that declassification of
control flow is intrinsically unsafe in decentralized systems,
so we only consider the integrity aspect of control flow
labels in this work. Like other types, function pointer types
T = (7 Poes Wlicp T,)¢ include an extra label ¢, which is the
label of the function pointer itself.

Auto-endorsing functions, where pc,,,, £ pc,,, downgrade
integrity and therefore explicitly violate noninterference [2]]
of integrity, which requires that trusted information is not

influenced by untrusted information.

We can understand the possible security-type confusions by
exploring the subtyping lattice of function types in an IFC
type system. Figure [3] shows the subtyping lattice of function
signatures. The output label 7, is covariant—a function that
only outputs high-integrity values can be used securely where
a function that outputs low-integrity values is expected. The
labels 7;, pc., and pc,,, are contravariant—a function that
can be called in an untrusted context and takes any input may
also be called from a trusted context or with a trusted input.

In a decentralized system, an IFC-labeled function type is a
security specification. However, certain security specifications
are self-contradictory, so certain function types are considered
ill-formed. Let p be the function where this function is defined.
Then a well-formed function type is one where pc,,, & p C
pc., T Ibl(7;). First, because each function runs at control-
flow integrity of p, p is no more trusted than pc,,,. Second,
the external pc should be no more trusted than p so that p
may call its own function. Finally, the labels of function inputs
should be no more trusted than the external pc pc,,; if not, this
function would take trusted input from an untrusted context.

3) Type Confusion of IFC Function Types: With the above
background, we are ready to analyze what kind of type con-
fusion may happen to IFC function types. Standard function-
call typing rules in prior IFC type systems [16]] taint all labels
except pcy,, within the function pointer by the label of the
pointer itself[]| This rule tracks the attacker’s influence over the
function output through the function pointer. For example, an
untrusted pointer to a function with type (U AN)u cannot
be called because it requires using an untrusted pointer in a
trusted control-flow context.

As reentrancy security forbids control-flow endorsement
with the body of trusted functions, calling a function with

type (U AN U)y from a trusted context is also insecure. As
a result, an untrusted function pointer may only be used by a
trusted function if all of its type constructors are untrusted.

Visually, in fig. [3| a type confusion is any type cast not
permitted by subtyping. As type confusion only happens to
function pointers provided by the attacker, such casts only
happen to untrusted function pointers. The only type of well-
formed untrusted pointer used by trusted principals have the
type (U AN i Ju, so there are only three possible down-
casts for each contravariant type constructor: the top pc, the
external pc and the input type. The run-time checks described
previously cover all three cases.

D. The Simple Cases of Type Confusion

1) Nested Type Confusion: A complex case form of type
confusion than those in fig. [3] is type confusion of function
types whose input and output types are themselves function
types. This nested type confusion, where the attacker lies about
the input and output types of function pointers, may cause

"Most prior TFC systems prove strict noninterference and do not support
control flow endorsement. So the external pc is equal to the body (pc., = p)
for function types. By the well-formedness condition, the pointer label taints
all labels except pcq,.

the deputy to indirectly type-confuse other function pointers.
Fortunately, well-formedness of function types ensures that
input and output types are untrusted function pointers, whose
damage is contained within the untrusted domain.

2) Base Type Confusion: Up to this point, the discussion
has focused on confusion of information flow types because
such confusion lies at the heart of the most challenging type-
confusion vulnerabilities. However, confusion of base types
can also lead to insecurity in some systems. For example, an
adversary might supply an integer where a function pointer
is expected, and trusted code might try to call the function,
transferring control to an arbitrary memory address. Since such
an integer is untrusted, the IFC mechanisms already protect
against such confusion, under certain assumptions. Intuitively,
when a value vy of base type 71 is used as if it were a
value of base type 72, the language run-time must ensure that
the behavior resulting from using the value is equivalent to
deterministically converting ve to some value of type 7s.

ITII. FORMALIZING TYPE CONFUSION

The examples from §II|demonstrate that a dynamic integrity
control-flow check and reentrancy locks at remote calls suf-
fices to enforce security against type confusion. In this section,
we outline a meta-language for describing decentralized sys-
tems and work toward high-level formal definitions of CDA
and type confusion inspired by the real-ideal paradigm [J5].

A. The Decentralized World Model

In our meta-language, a program P is a list of top-level
function declarations by different principals p representing
different trust domains. A principal may be controlled by an
attacker A that executes arbitrary code. Principals are stateful
and each principal has a separate memory heap that maps
references to values. Their collective state is a program context
>.. We assume (and later define) a deterministic trace semantics
for program executions written as (P, X, A) |} t. The behavior
of a program-—attacker pair is a function from program context
3 to trace ¢ where (P, X, A) | t.

We conservatively model function pointers as an abstraction
of various real-world systems, such as the public methods
of EVM smart contracts. First, function pointers are publicly
visible and callable. Second, we assume function pointers
are opaque to the caller: that is, the caller cannot inspect
the function body or type without transferring control to
the callee. Third, the caller and the callee in remote calls
know each other’s identities. Fourth, static information flow
control is enforced locally within each function. Finally, all
functions publish their IFC type signatures, though function
types provided by adversarial principals may be lies.

B. Type Confusion Security

Prior static IFC type systems usually either assume well-
typed attackers or restrict the interface between trusted code
and untrusted code. Type confusion enters the picture when we
reason about information flow but consider a more powerful
ill-typed attacker. To formalize the idea of type-confusion

security, we appeal to a simulation argument between well-
typed and ill-typed attackers: a system is type-confusion secure
when for each ill-typed attacker, there is a well-typed attacker
who has the same behavior. This is a kind of real-ideal
simulation—the real world has ill-typed attackers but includes
run-time checks to ensure that they cannot cause damage; the
ideal world has well-typed attackers but does not need run-
time checks. Since the real world is just as secure as the ideal
world, the programmer can think about security in terms of
the ideal world with its well-behaved attackers.

Definition III.1 (Type Confusion Security). A program P
is secure against type confusion when for every ill-typed
attacker A" running in the real world with run-time checks,
there exists a well-typed attacker -~ A’ that produces the
same behavior in the ideal-world dynamic semantics with no
run-time checks. With real-world execution and ideal-world
execution represented by the notations {,- and |{};, security can
be formalized concisely:

VA" I+ A VS
(P,S, A" "t A (P,S, A Pt =t~ t

This definition ensures robust hyperproperty preservation
(RHP) [[17], which means that all hyperproperties that hold in
the well-typed setting are preserved even in the presence of
ill-typed attackers.

Hyperproperties are relational properties over multiple
traces of programs that can express complex security and
correctness requirements. For example, both noninterference
[2] and nonmalleable information flow (NMIF) [18] are hy-
perproperties that relate 2 and 4 traces respectively. RHP
thus enables sound decentralized-world security reasoning
assuming a well-typed attacker model.

Type confusion security depends on the semantics of both
the well-typed and ill-typed languages. In order for the defini-
tion to be useful, the ideal world (well-typed world) should be
easier to reason about than the real world (ill-typed world); the
ideal world should be expressive enough to build interesting
programs, and the real world should be realistic enough to
model practical attacks.

In the following sections, we instantiate two IFC-typed core
calculi. The ideal world calculus has no run-time checks and
only well-typed attackers; the real world calculus has run-time
checks that causes well-typed programs to abort when they are
type-confused. We then instantiate type confusion security for
the calculi, and use it to prove preservation of all security
hyperproperties between the ideal and the real world.

IV. A CORE CALCULUS FOR TYPE CONFUSION

In this section, we define)\;., a formal model of a low-level
decentralized language that with remote function pointers.
Ate uses both static and dynamic information flow control to
enforce security.

A. Syntax

Figure [shows the syntax of A;.. The language models a
decentralized system with multiple principals p € P, a subset

Principal p,g e PCL

Label L,pc e (L,E)

Bool b € {true, false}

Variable reX

Fun. Name feF

Ref Name heH

FnDecl F € P x F — Signatures x Functions

HeapType R &P x H — Types

Program P € FnDecl x HeapType

Adv.Lbl. ACP

Adv. Fun. M (A) € A x F — Signatures x Functions

Attacker Aec Ax M(A)

Heap 3 € P x H — Values

. PCeyIPCiop
Functions F = pf:7 — 7:= Az
Ref. Decl. R == ph:T
Value v oz= () |be|pfelx
Expr. e u= v |abort | v®uv | v pclv | {e}ps
| vl 2| write,(v) | read,
| letz=-eine | if vtheneelsee
Signature 1 = T PleaPiton, To
Py Py

Type 7 == 1] booly | (7 = To)e | 0
Event w = €| (ph:=v) | call’’(p) | ret(p) | L
Trace t = el tw

Fig. 4: Syntax of \,..

of which are controlled by an attacker A. Here, a program
P = (F,R) is a pair of a function declaration table F' and a
heap type declaration table R. The function declaration table
F maps each function name p.f to its static type signature
and function body. At run time, the attacker function table
M (A) replaces the bodies of functions defined on attacker-
controlled principals. As the function bodies are statically
type-checked against the published function signatures from
F, the attacker cannot lie about function signatures. The
program also contains a heap declaration table R, which
maps heap names p.h to their static type signatures. X is the
run-time heap that maps heap names to values. Equivalently,
the function and heap table can be characterized by lists of
function/heap declarations with distinct names.

Function bodies have the form Ax.e, where x is the input
variable and e is the function body expression. An expression
may be a value v, which is either a unit, a boolean, a function
pointer, or a variable. Expressions in ;. follow A-Normal
Form (ANF) [19]: each intermediate computation is bound to
a variable and control flow only happens at if-expressions,
let-bindings and remote function applications. Computation
includes aborting (abort), binary operations between bools
(v ® v), remote function applications (v [pc]v), returning
({e}p), information downgrading (v | ¢) and reading and
writing the heap (read,,write;,(v)). Each remote function
application is tagged with the pc label used for the remote
call, which in a real language would be inferred statically.
Wrappers {e}, ¢ are not part of the surface syntax and are

Evaluation Context E := []|letz=FEine | {E},
(P,X,A) |t cur(E) =p
PROGRAM cur(E) = h(E,pa) h({E}p.s.q) = h(E,p)
pa-main = e <({;};;:lw§j O) =7 {v1, %,¢) h([].p) =p h(let & = E in e,p) = h(E,p)
———{(e3,8) = (e, Bt f——— (e, B, 8) > (e, 5, 1)

EVAL-EXPR ABORT

<e7 Z’ t> *>C <6/7 E/? t/>

=(t; 1)

tl
(Ele], %, t) > (B[] X, 1) I

WRITE
cur(Ey=p Y =3[ph—1]

(E [abort] , 3, t) —

READ
cur(E) =p S(p.h)=w
(L,3,¢) (Eread,], X, t) — (E[v], X, t)
Or

(E |writey, (v)], 2, t) = (B[], Y, t')

IF-T IF-F

(Ve @ vpr, B, 1) = (V[®]V)ener, B, 1)

DOWNGRADE

(if truep then eq else eq, 3, 1) —¢ (e1, %, t)

APP-REMOTE
LET

(if falsey then ey else eq, 3, 1) —, (€2, X, t)

body(q.g) = Azx.e

<b5’ \I/ E»E7t> —e <blvzat>

RETURN

t' = t;call”(q) t' = t;ret(q)

(let z =wvin e, X, t) =, {e{v/x}, %, t)

(a.g¢ [pclv, B,t) —e ({efv/}}eq, 5, 1)

<{U}Q»97 %, t> e <’U, %, t/>

Fig. 5: Dynamic Semantics of A;..

used to track the execution context of expressions. Information
downgrading expressions are controlled declassification and
endorsement operations [20] that explicitly violate information
flow policies for necessary expressiveness. Write expressions
are the only expressions that cause side effects to the heap.

Reads and writes access the heap locations & at the principal
the expression runs on. In other words, \;. has no expressions
for remote read and write; however, remote read and write
could be implemented by reader and writer functions. This
allows us to treat references and function pointers uniformly,
for simplicity.

The type system uses standard information flow control
(IFC) types [21] explained in where function signatures
are annotated with input type, output type, external pc and top
pe. Function Ibl(7) function that returns the label component
of a type 7; unit values are always trusted (Ibl(1) = L).

The program emits trace events w during execution. An
event may be a write event (p.h := v) of a value v, a call event
call”®(p) to principal p, a return event ret(p) from principal p
or an abort event L.

B. Attackers

Formally, each attacker is a dependent pair A = (A, M (4)),
where A C P is the set of principals the attacker controls.
We assume the existence of an attacker-controlled principal
pa who trusts all other attackers (p4 has integrity level T).
The attacker function table contains a special main function
pa.main that serves as the entry point of a program.

Let the program be P (F,R), attacker be A
(A, M(A)). We define a helper functions body(p.f) that
dynamically returns the body of the function after attacker
replacement.

Ar.e peA AN M(A)(p.f) = (n,\z.€)

body(p.f) = {Ax.e pé€ A AN F(p.f)=(n,\x.e)

C. Dynamic Semantics

The dynamic semantics of A;. is shown in fig. E} The
program starts at the attacker’s main function and either
terminates with a value or aborts. The run-time configuration
keeps track of the heap 3, the current expression e and a
trace ¢ of events emitted so far. We make more note of remote
application, return, abort, read and write. In APP-REMOTE,
the call expression steps as usual by the body of the function
with the parameter replaced by the argument. However, to keep
track of the execution context of the remote call, the body
is wrapped by braces annotated with the function identifier.
RETURN operationally removes wrapper braces, effectively
going back to the caller context. The helper function cur()
over evaluation context finds the innermost wrapper braces
and identifies the principal of the function currently executing.
ABORT steps directly to a special value L, terminating the
program immediately. READ reads from the heap ¥ and
WRITE writes to the heap and emits an event.

- P Pr A Pr3
T-SIGNATURE
PCeaPCrop
F(p.f)= (7 To, AT.€) T 7D (P Plrop) eI T peyo, Ep E peg, T Ibl(T)
F(F.R)
T-ADV T-STORE
A= (A, M(A)) F(M(A), R) R(p.h) =T S(p.h) = v 0; pe; p; peiop gy g
(F,R)F A (F,R)F X
T pespi pegoy et
T-UNIT T-BooL T-FIELD T-ABORT
F(q.g) = (n,\a.e)
T'; pc; p; pcfsll)f F(): L pe; p; peioy LI b, : bool, F;pc;p,pczslf Fq.ge:me T'; pc; p; pc:(le,f - abort : T
T-VAR T-Op T-DOWNGRADE
T'; pc; p; pczop F v; : booly, T; pe; p; pct:pf F v : booly
T,a:75pe;pspeiey Fair T pes p; pegey 1= v1 © va : booly, L, T; pe; ps peiey! v L £ booly
T-LET T-1F

F;pc;p;pcfﬁéf Fe 7 L,z : 75 pc;p; pctop Fe:r

self | et g =€ ine:r

F;pc;p;pcfoelf F v : booly T pe UL p; peiop e i

self

I'; pe; p; peioy I'; pe; p; pey,,, 1 if v then e else eg 1 71 U To
T-READ T-WRITE
R(p.h) =1 pc T 1bl(T) R(p.h) =1 T; pe; p; peiop “fpy:r pe C Ibl(7)
T'; pe; p; pesey = read), I'; pe; p; pejey 1= writey, (v) : 1
T-AppP
PCeaIPCtq
I'; pe; s pegey) v e (7 “Iyro)e Tipesppeioy Foua
el
TXT; pc UL C pc,, Doy E PCyop UD pctopf C PCiop
T ; PC; D3 pcto o F U1 [pcea:]UQ 1 To U ¢
T-WRAPPER T-SUB
_ Pler WPCiop e e . ! e e e meSELS C
F(q.9) = (7 —)TO,/\x e) T T Q5 PCyop €1 Ty T Lspespspeyoy, Ferr
7
I: pc’; p; pctop F{etqq: o T pe; p; peiop The:r
TT
S-UNIT S-EMPTY S-BooL S-FuNc
¢ E El ¢ < gl To < T(; Ti/ ST pcéx < PCey pcfop pctop
exIPCeo exIPCyo
T=x1 o7 by < by (73 DeaTPlrop, To)e < (7] DoexPlton,)0

Fig. 6: Static semantics of \;..

D. Static Semantics

Figure E] shows the static semantics of A;.. As explained
in § types are covariant in their labels; function types are
contravariant in input type and pc types, and covariant in
output type. The well-formedness condition pc,,, T p C
pc., £ Ibl(r;) of function signatures is enforced in T-
SIGNATURE.

The typing judgment has the form T'; pc; p; pcfslf Fe:T,
where I" maps variables to IFC types, pc tracks the current

control-flow context, p is the principal on which the expression
e is being typed, pctopf is the top pc of the current function,
e is the expression being typed and 7 is the type of the
expression. The judgement is implicitly annotated with a
program P = (F, R). Rules for unit, boolean, operations, let,
and subsumption are standard. T-FIELD queries the program
for the type of the top-level function. T-DOWNGRADE change
the label of the type related to a value into another label. T-IF
is mostly standard, except it is possible for e; to have different

4{ (e, 3, locks, t) —, (e, X, locks, t) }—{ (e, 3, locks, t) = (€, %, locks,) }

APP-REMOTE-OK

g¢ A expc(Elg.ge [pelv]) = (et peca™) cur(E)=p body(q.g) = A.e
p U pecaller © pecatlee VYl € locks, pU pecelter C gL locks’ = locks; g t' = t;call”(q)

(E[q.ge [pc]v], 3, locks, t) —,. (E [{e{v/x}},], 3, locks', ')

APP-REMOTE-ABORT

q¢ A expe(E [g.g¢ [pe]v]) = (peea'”, pegal’ee) cur(E) =p RETURN-POP
(p L pec@lter iZ pecallee or 3¢ € locks « p L pecele™ iZ q LI f) qgg A locks = locks'; ¢ t' = t;ret(q)

(E [q.ge [pc]v], X, locks,t) — (abort, X, locks, t)

APP-REMOTE-CALLEE-ADV

ge A body(q.g) = Az.e t' = t;call”(q)

({v}q.g, 5, locks, t) =, (v, 3, locks’, t')

RETURN-CALLEE-ADV
ge A t' = t;ret(q)

(E [q.ge [pcg‘;””}v] .3, locks, t) =, (E [{e{v/z}}q.4], %, locks, t')

({v}q.g: 2, locks, t) —¢p (v, E, locks, ')

Fig. 7: Run-time check in A},. These rules replace APP-REMOTE and RETURN from ;..

types; the if-statement is typed-checked with respect to the join
of the type of both branches, where the join for types (71 L)
is defined as the least upper bound of 7; and 75 with respect
to the subtyping relation <. T-READ and T-WRITE both type
check with respect to the type that the principal p and the ref
name h maps to within the type heap R. When interacting with
the store, it is necessary that the current label of the type 7
is no more trusted than the current pc, as untrusted individual
should not access or modify trusted information. T-WRAPPER
mirrors that of T-SIGNATURE, which requires that type of the
expression in the wrapper to respect the function signature.

T-App enforces the pc., and pc,,, policies from First,
it ensures both the calling pc and the label of the function
pointer £ are no less trusted than the external pc of the function.
This ensures that the external pc policy is respected and the
attacker influence over the function pointer is accounted for.
The check pc., T pcy,, U p requires that the external pc
either flows to the top pc or flows to the caller p. In the
first case, the function being called will never auto-endorse
before it returns; in the second case, this function call is not
an attenuated call, so the control flow integrity p does not fall
below p in the first place. Finally, the call checks that pc,,,
of the function being called is bounded by the current top
pc pcfsll,f of the caller. This check ensures the promise made
pc; s}l)f makes about the maximum effect of the current function
is not violated indirectly through remote calls. We write 7, LI ¢
as a shorthand for updating the label of 7, to Ibl(7,) LU 4.

For type safety, we require that all outputs from the heap
> are well-typed (T-STORE).

Lemma IV.1 (Type Safety of A\:.). Progress:
}—P/\PI—Z/\F;pc;p;pcfsll)fl—e:T/\e;év
= 3¢, (¢, %,t) — (¢, X, 1)

Preservation:

FPAPESAT; pesppeiel et Ale,2,t) — (¢, T, ¢)

= PFY A3, T;pe;p; pcfszljf Fe' 7

Proof. See appendix.

E. The Real World

We define the calculus A}, of the real world, where the
honest principals use dynamic IFC checks.

Attackers from AJ, still respect the non-security types—they
do not use bools as function pointers and vice versa. Typing
rules for attackers in A}, are identical to that of A:. except
that all the IFC subtyping judgments are removed. We show
the static semantics of ill-typed attackers in the appendix.

Figure [/| defines the run-time checks in the operational
semantics —, and —., of Aj,, which is identical to —
and —. from A, respectively except that APP-REMOTE-OK
and APP-REMOTE-ABORT and APP-REMOTE-CALLEE-ADV
replace APP-REMOTE from \;.; RETURN-POP and RETURN-
CALLEE-ADV replace RETURN. The honest principals also
maintain a dynamic lock list to prevent reentrancy attacks [4].
Each honest principal puts itself into the lock list when it is
called and removes itself from the lock list when it returns.

All dynamic checks happen at the callee side. When the
callee is controlled by the attacker, no dynamic check happens
and the call always succeeds (APP-REMOTE-CALLEE-ADV).
The lock list remains intact because the attacker ignores all
run-time mechanisms.

Otherwise, the callee is honest and performs two checks af-
ter receiving pcce” from the caller: 1) whether the caller and
the callee agree on the external pc of function being called; 2)
whether this call violates an existing reentrancy lock. This run-
time check uses the auxiliary function expc to model caller’s
and callee’s knowledge of the call. expc(F [q.g¢ [pcv]) =

(pcggller’ pczgllee) given by
pecaller — 1 cur(E)=pandpe A
em pc cur(E)=pand pg A
(’.qu to:
pecallee — pe where P(q.g) = (1, —=—s 7 Az.e)

(p-h:=() w=(ph:=gq.g)

€ w = (p.h :=v), IbI(R(p.h)) € A
w|z=1c¢€ w = call’(q), g€ A

€ w=ret(q), € A

w otherwise

t/ t=tw, wi=¢
tla=qthwlg t=tw, wz#e

€ t=c¢€

tat =tz =tz
Fig. 8: Trace Erasure and Equivalence.

We conservatively assume that attackers always try to by-
pass the dynamic check when calling honest principals. Any
attacker who wishes such a call to fail may be simulated
by another attacker who simply aborts before the call. So
when the caller is controlled by the attacker, it always sends
pccaller — | to the callee so that the call passes the first
external pc check. Otherwise, the caller is trusted and she
sends the correct calling pc pc as pcc!e”. In cases where the
callee is honest, the callee uses pc,, from its own function
signature as pccaliee,

The check pLipccaler T pecallee ensures that the caller uses
sufficient integrity to call the callee function. Mathematically,
this is two checks in one: p T pcc@e® and pcc@ter T pecaliee,
When the caller is honest and does not lie, this check ensures
that the calling pc is no less trusted than the external pc of
the callee: p C pc T pc.,. A confused caller would fail
this check when it uses untrusted pc to call a high-external-
pc function. When the caller is controlled by the attacker,
pecaller — | pecallee always passes. In such case, we
rely on p T pcelee which upper-bound the lie made about
pccaller by the attacker’s own integrity.

The reentrancy lock check is performed entirely at the callee
side. When level ¢ is locked, the function called is either one
does not endorse control flow (pc., T g), or the control flow
is no less trusted than the lock level to begin with (pc C /).

V. TYPE CONFUSION SECURITY

Informally, we require that every observable behavior with
an ill-typed attacker is also possible with a well-typed attacker.
Observable behaviors include writes to trusted heap references,
calls to trusted principals, returns from trusted principals, and
aborts. Figure [3| defines trace erasure t|; and that erases all
untrusted events from a trace ¢. Trace equivalence ~ 5 requires
that two traces are identical after erasure. Finally, function
values are considered indistinguishable as they are opaque.

Theorem V.1 (Type Confusion Security). Type confusion se-
curity holds between \i. and X}, for all well-typed programs.

FP = VF A" 3+ AV} X,

(P,S, AN "t A (P, A Pt = t= it

Proof. We provide a sketch for core insights, and a more
detailed version can be found in the appendix.

The proof is in three steps. First, we construct an attacker
A? from A". Second, we show that A° is well-typed. Finally,
we prove behavioral equivalence.

Figure [0 formally defines the simulator construction. The
construction of A’ from A" is defined using 7 [-], which trans-
lates A" = (A, M"(A)) into (A, M*(A)) where M*(A) =
T[M"(A), F]. The key idea in this translation is the construc-
tion of new, suitably modified functions from F' and M"(A),
which we store in M*(A). More precisely, M¢(A) contains
two new variants of each function: one modified by pc,,, = L
and the other by pc,,, = T. As programs are finite (thus
mentioning finitely many functions), and F is infinite, there
are always fresh names for these new functions. N'[-] is used
to map into these fresh names (we make sure to not have name
clashes), and U/ [-] is used to give type signatures to completely
new functions. Original type signatures (S-ORIGINAL) are left
unchanged, as they are fixed by the (trusted) program P. The
function C’(-) is an auxiliary function that converts between
the two modified versions of any function.

Well-typedness of A° is fairly straightforward, and pre-
sented in detail in the appendix. A noteworthy insight of
this proof is that the freshly created functions belong to the
attacker principal p4 (whose integrity is the least trusted
label T). By fixing the control flow at T, which cannot be
further lowered, these functions are well-typed and immune
to reentrancy attacks.

Finally, we prove behavioral equivalence using bisimulation.
Here, we sketch out the main cases: By replacing functions
with Az.abort, S-AUTOENDORSE-ABORT and S-HIGH solve
PCe, and pc,,, confusion respectively. Furthermore, they are
complemented by S-AUTOENDORSE-SUCCESS and S-Low
when there is no confusion. S-ORIGINAL replaces the original
attackers of A". Detailed proofs are presented in the appendix.

O

A. Base Type Confusion

In this section, we describe Al, to model base type-
confusion attacks where attackers do not follow any typing
discipline. A, has the same syntax as A;. and accepts all
terms. To ensure that progress holds for this language, we
need to define dynamic semantics for ill-typed operations. For
exmple, the language should take a step when the guard of an
if statement is a function pointer.

We assume the existence of a low-level abstract semantic
domain C, and all values are interpretations of codes from
this domain. Let the interpretation be a surjection [[c] ., which
maps each code ¢ € C into a value of type 7. For example,
in C, the interpretation function can be instantiated by setting
the domain to be the bytes and [¢]po0i = false only when c is
0, and true otherwise.

Instead of defining semantics over values, we define them
over their codes. When a (v : 77) is used in elimination
forms (like IF-T for bools and APP-REMOTE for functions),
the value is reinterpreted into the expected type. Formally,

PCeqaWCiop

—— TIM(A), Fl(p.f) = (7

Toy AT.€)

S-ORIGINAL

M(A)(p.f) = (n, A\z.e)

TIM(A), F)(p-f) = (0. AN T [p.fT7) [TUCT (2) LU [7:])

S-AUTOENDORSE-ABORT

S-HIGH
F(p.f)=n,Ave) pc, A
TIM(A), FJN*[p.f]) = WU*[n]), Az.abort)

S-AUTOENDORSE-SUCCESS
F(p.f) = ve) pc, €A pgA U=

F

(p-f)=(,Ave) pe, €A pgA

=T
TIM(A), FJN“[p.f]) = WU [n], Az.abort)

S-Low
M(A)(p-f) =, ze) peA

TIM(A), FIWN [p.fT) = @ [n], a.C(p.fr ((CT(2))

-
+7i)))

TIM(A), FIN [p-f1) = @[], Aa.C*(S"[e]))

Ulr Lo lony o1 = Ul Il 2 U]+ U"[booly] = boolt U] =1
Ctv) =w
Clay=2 CH))=0 Clbe) =br Clp.fu) = N'Ip-fl+ C(e) = let = e in C'(x)

S[v] =C"(v) S*[abort] = abort
S'let = = ey in ex] = let z = S*[e1] in S*[e2]

HEp.h] = pa.’
S*[read,] = read,,

HEp.h] = pa.h’
S’ [write;, (v)] = write,,, (S*[v])

Sv | 0] = S [v]

STy ® va] = S [v1] ® Svs]

S[if v then e; else eo] = if S‘[v] then S’[e;] else S*[es]

Svr va] = C(wy) [TIC(v2) SUedag] = {S e} o

Fig. 9: Simulator Construction

in each execution, we use the function [v]~! to define the
low-level code of v. To ensure that well-typed programs of
A\b. behave the same as those of A7, [[v] '], = v should
hold for well-typed values. Note that the semantics of A,
are nondeterministic for ill-typed operations, because multiple
codes may encode the same value.

Type confusion security holds between A, and A\?. when

fixing [v] ~!7", the source of nondeterminism.

Lemma V.2 (Base Type Confusion Security). Type confusion
security holds between \., and \., for all well-typed P.

FP = VA" I ATV E S,
(P, A) PN (PR, A) Tt = trst
Proof sketch: the simulator synthesizes a type derivation
tree for the program and simply reinterprets all casted values

as the correct type.
More importantly, type confusion security composes.

Lemma V.3 (Base Type Confusion Security). Type confusion
security holds between N2, and M. for all well-typed P.

FP = VA" I A VY,
(P, A) P A (P, A Pt =ttt

10

B. Examples Revisited

For better intuition of the construction of the simulator, we
revisit the examples from §IIl Let the lattice be a two-point
lattice {U = T,T = L} where T C U. The attacker adv has
label U and the compiler has label T In the syntax of A,
the compiler’s type is ((booly LALEN Dy) YT 1 (we ignore
the code argument for simplicity).

1) The CDA Attack: The billwriter’s type is boolyy ——s 1.
The attacker is ill-typed because it uses a high-external-pc
function pointer as an argument to a function that takes low-
external-pc function pointer only. The ill-typed attacker and
its simulator are given as follows:

adv.main :=Compiler.compile;; [U]billwritery
ST [adv.main] :=CT (Compiler.compile;;) [U]CT (billwritery;)

The simulator translates the attacker’s main function by
applying ST[] to its body where 7' label means this function
is allowed to auto-endorse. Therefore, the translation replaces
both the function pointer and the argument by their 7-versions.
As shown in fig. @ the body of CT(Compiler.compile;) is:

Az.Compiler.compile;; [U]CY(z)

It simply calls billwriter with the U-version of the argument,
which ensures that the argument never auto-endorses. Finally,
by fig. @ the body of CY(billwriter) is abort because it is an
attacker-controlled function pointer with trusted external pc.
This function aborts when being used, simulating the run-time
check failure in the real world.

2) The Reentrancy Attack: The type of the function
adv.reenter is booly UL, 1. The attacker is ill-typed because
it uses a high-top-pc function pointer as an argument to a
function that takes low-top-pc function pointer only. The ill-
typed attacker, its simulator and the T-version of the compiler
function pointer are defined as follows:

adv.main := Compiler.compile;; [Uladv.reentery

well-typed ideal-world attacks. Then (P, |}, AtksWT) is CDA-
Secure.

Proof. The pc,, restriction in T-APP of the static semantics
(fig. [6) enforces this restriction. O

Theorem V1.4 (CDA Security in the Real World). Let - P be
a well-typed program, and AtksReal be the set of real-world
attacks. Then (P,|}", AtksReal) is CDA-Secure.

Proof. Hyperproperty preservation is ensured by theorem [V.1]
which we specialize to theorem and theorem O
B. Reentrancy Attack

A reentrancy happens when an auto-endorsing function is
called while a trusted level is locked. A formal definition is

T e § : ; T
§" [adv.main] := C (Compiler.compile;;) [U]C" (adv.reentery) facilitated by defining the call stack: the sequence of principals

CT(Compiler.compile;;) := Az.Compiler.compile;; [U]CY ()

By fig. E], the body of CY(adv.reenter) is identical to that of
adv.reenter except that all auto-endorsing calls are replaced by
aborting functions. The behavior of CY(adv.reenter) simulates
that of adv.reenter correctly the cases where the reentrancy
lock is active.

VI. APPLICATIONS

Our simulation result ensures preservation of all hyperprop-
erties satisfied by well-typed programs are satisfied in the real
world too. The following subsections demonstrate the payoff:
Real-world (A},) programs are CDA and reentrancy-secure,
simply because well-typed (\;.) programs are. In addition, we
also formalize noninterference preservation between the two
settings.

A. Confused Deputy Attacks

As shown from the example in fig. Confused Deputy
Attacks (CDAs) are simply violations of external pc policies.
That is, a caller’s calling pc level must not be less trusted than
the callee’s external pc.

Definition VI.1 (CDA call). Let P = (F, R) be a program.
A call event is a CDA call when a caller’s calling pc level is
less trusted than the callee’s required external pc.

<
Formally, let F'(q.g) = (1; DoerPltor, 7., Az.e), then:

CDA(call’(q.9)) < pc L pc.,

Definition VI.2 (CDA Security). We define what it means
for the tuple (P,J}, Atks) to be CDA secure, where P is a
program, |} is its semantics, and Atks is the set of attacks
under consideration. Informally, we simply require all its
traces to be CDA-event free.

Formally, (P, |}, Atks) is CDA secure if, for all ¥ and for
all A= (A4, M(A)) € Atks,

(P2, At = Ywetlz CDA(w)
Well-typed programs are CDA-secure by construction.

Lemma VL3 (Well-typed programs are CDA-secure). Let
F P be a well-typed program, and Atksldeal be the set of

11

actively called in a trace.

Definition VL5 (Call Stack). The call stack of a trace t is
given by stackof(¢). Push and pop operations are defined in
the obvious way.

¢ t=1()
h kof (¢ — ¢ callP¢
StaCkOf(t) = pus (stac o (t)’ q) t t;ca (q)
pop(stackof(t')) t=1t';ret(q)
stackof (¢') t = ' other

Additionally, we say t < t' when t is a prefix of ¢'.

Definition VI.6 (Reentrancy Security). We define what it
means for the tuple (P,l}, Atks) to be reentrancy-secure,
where P is a program, | is its semantics, and Atks is the
set of attacks under consideration.

Informally, we require that no intermediate trusted-function
calls made during an execution of an untrusted call by a trusted
function.

Formally, we define (P, |}, Atks) to be reentrancy-secure:

Take &, A = (A, M(A)) € Atks, and (P, %, .A) | t. Then
consider all ¢ < ¢|; and let stackof(t') = p1,...,p,. We
require that in all such cases, if 3i p; € A Ap;+1 € A, then
Vk > (i+1) py € A.

Similar to CDA security,
reentrancy-secure in both worlds.

well-typed programs are

Theorem VL7 (Reentrancy Security). Let = P be a well-
typed program, Atksldeal be the set of ideal-world attacks,
and AtksReal be the set of real-world attacks.

Then both (P,ll, Atksldeal) and (P,|", AtksReal) are
reentrancy-secure.

Proof. The pc,,, restriction in T-APP of the static semantics
fig. [6] gets us the ideal-world result. The real-world result
follows from hyperproperty preservation (theorem [VI). [

C. Noninterference

Noninterference is a security hyperproperty that ensures
trusted information is not influenced by untrusted data and
secret information does not influence public data.

Here, we define noninterference for integrity using low-
equivalence ~ ; between X pairs, defined in fig.

Definition VI.8 (Noninterference of Integrity). The program-
semantics pair (P,|) satisfies noninterference when for at-
tackers who control the same set of principals A, running the
program with trusted-equivalent initial configurations results
in trusted-equivalent traces.

Formally, consider ¥, ¥, A°
(A, M(A)3). We require

(A, M(A)y), and A

21 A 22 —
(P721a~’411)‘U’tl/\(P7227'Al2>Ut2 -
1=t

Theorem VI.9 (Noninterference simulation). If noninterfer-
ence holds for (P,|}), then it also holds for (P,|").

Proof. This result also follows from hyperproperty preserva-
tion ensured by theorem O

VII. RELATED WORK AND DISCUSSION

1) Fartial Typing in Open Systems: Riely and Hennessy
[22] and Hennessy et al. [23] both aim to provide secure
execution in a decentralized system in which not all code is
well-typed. Their computation models are based on the 7-
calculus and differ from ours in three major ways: 1. instead
of RPC calls, principals send code blocks to each other; 2. the
type system does not track information flow; 3. the primary
theoretical result is subject reduction. Lacking RPC calls, their
computational model cannot reason about attacker-controlled
runtimes, and cannot model standard CDA attacks.

2) CDA and Capability Systems: Rajani et al. [8] formally
characterize CDA vulnerabilities and show that capabilities
cannot prevent all CDAs. Our work extends their idea in a
more expressive setting: 1. instead of first-class references,
we have function values, yielding a more expressive language
and a stronger attacker model; 2. our real-world semantics does
not assume a centralized, trusted runtime. They showed that
CDAs are only prevented when Full Provenance is enforced,
tracking all influences from both control flow and data. This
is the same insight as using information flow control for both
control flow and data flow in our work. Our major theoretical
result is a simulation theorem that generalizes to other kinds
of attacks, and CDA security is just an instance of our results.

3) Reentrancy Security: Our approach to reentrancy is
inspired by the work by SeRIF [4]]. SeRIF is a core calculus
that enforces secure reentrancy using a combination of both
static and dynamic IFC, and the attacker model is similar to
that of our real world A},. The language supports a wide range
of language features that allows users to toggle between static
and dynamic IFC for performance. Our real-world dynamic
semantics is analogous to a SeRIF program that uses dynamic
IFC mechanisms only. While reentrancy security is not the
main focus of our work, it is an essential ingredient of our
type-confusion security.

12

4) Gradual Typing: While the problem of connecting a
statically typed ideal world and an ill-typed real world is
reminiscent of gradual typing [24} 25]] where types can be left
statically unspecified, our work solves an orthogonal problem.
Unlike gradually typed languages, A}, assumes that all trust-
worthy top-level functions expose correct typing signatures.
While prior work has been done on gradually typed IFC
languages [26, 127], they focus on different semantic conditions
like gradual guarantee [28]] and noninterference [2].

5) Real-Ideal Simulation: Our definition of type confusion
security is inspired by real-ideal paradigm widely used in the
cryptography literature [5]. Patrignani et al. [29] note that real—
ideal simulation can be used as a compiler correctness crite-
rion, which requires that the source level simulate the target-
level behavior. When interpreted as compiler correctness, our
type-confusion security theorem means that a compiler that
compiles the ideal world to the real world is a secure compiler.

6) Control Flow Integrity (CFI): Abadi et al. [30] propose
Control Flow Integrity (CFI), a security policy that requires
all executions follow paths in a pre-determined control flow
graph (CFG). Niu and Tan [31] explores Modular CFI (MCFI),
a mechanism that enforces CFI in an open system where
independently instrumented libraries are linked dynamically.

In fact, our reentrancy mechanism enforces a form of CFI
over trusted principals, but our notion of control-flow integrity
is stronger, because it forbids adversarial influence on trusted
control flow, except through explicit auto-endorsement. This
stronger notion is a key ingredient for proving type-confusion
security.

7) Smart Contract Security: Our core calculus and security
theorems provides a formal basis for the consensus-based
[32} 33]] design patterns that originated from the smart contract
community. For example, the Checks—Effects—Interactions
(CEI) pattern says callbacks should be executed after all state
changes are made, enforcing secure reentrancy. The “pull
over push” pattern recommends withdrawing over sending
in transferring funds, which reduces risk of CDA attacks by
reducing attenuated calls by the deputy.

VIII. CONCLUSIONS

Defining security in decentralized, reactive systems has long
been a challenge. In this work, we introduced type confusion
security, a formal security definition that tames this complexity
through a compositional approach to attacker models. The
key insight for enforcing type confusion security is enforcing
security against attacks to control flow integrity, which static
security mechanisms struggle to protect against. We identify
the two well-known attacks to control flow integrity, CDA and
reentrancy attacks, and identify a simple static enforcement
mechanism for each in the ideal world with well-typed at-
tackers. We also propose dynamic enforcement mechanisms in
the real world with ill-typed attackers, and use type confusion
security to show that the real world is as secure as the
ideal world. Finally, we demonstrate the applicability of our
results by applying type confusion security to various security
hyperproperties.

(1]

(2]

[3

—

[4

—

[5

—

[6

—_

(71

[8

—_—

[9

—

[10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

REFERENCES

F. B. Schneider, “Enforceable security policies,” ACM Trans-
actions on Information and System Security, vol. 3, no. 1, pp.
30-50, 2001, also available as TR 99-1759, Computer Science
Department, Cornell University, Ithaca, New York.

J. A. Goguen and J. Meseguer, “Security policies and security
models,” in IEEE Symp. on Security and Privacy, Apr. 1982,
pp. 11-20.

N. Hardy, “The confused deputy: (or why capabilities might
have been invented),” SIGOPS Oper. Syst. Rev., vol. 22, no. 4,
pp. 36-38, Oct. 1988.

E. Cecchetti, S. Yao, H. Ni, and A. C. Myers, “Compositional
security for reentrant applications,” in IEEE Symp. on Security
and Privacy, May 2021.

R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in 42" Symposium on Foundations
of Computer Science (FOCS). IEEE Computer Society, 2001,
pp. 136-145.

J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.
Myers, “Fabric: A platform for secure distributed computation
and storage,” in 22" ACM Symp. on Operating System Princi-
ples (SOSP), Oct. 2009, pp. 321-334.

N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres, “Secur-
ing distributed systems with information flow control,” in 5%
USENIX Symp. on Networked Systems Design and Implemen-
tation (NSDI), 2008, pp. 293-308.

V. Rajani, D. Garg, and T. Rezk, “On access control, capabil-
ities, their equivalence, and confused deputy attacks,” in 2016
IEEE 29th Computer Security Foundations Symposium (CSF),
Jun. 2016, pp. 150-163.

Cointelegraph, “Dexible aggregator hacked for $2M
via ‘selfSwap’ function,” |https://cointelegraph.com/news/
dexibleapp-aggregator-hacked-for-2m-via-selfswap-function,
17 Feb. 2023, accessed August 2023.

CoinDesk, “Cross-chain DeFi poly
hacked; hundreds of millions potentially
https://www.coindesk.com/markets/2021/08/10/

network
lost,”

site

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

Computer Security Foundations Symp. (CSF). 1EEE Computer
Society, 2019, pp. 256-271.

E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable
information flow control,” in 24™ ACM Conf. on Computer and
Communications Security (CCS). ACM, Oct. 2017, pp. 1875—
1891.

A. Sabry and M. Felleisen, “Reasoning about programs in
continuation-passing style,” Lisp and Symbolic Computation,
vol. 6, no. 3—4, pp. 289-360, Nov. 1993.

E. Kozyri, S. Chong, and A. C. Myers, “Expressing informa-
tion flow properties,” Foundations and Trends in Privacy and
Security, vol. 3, no. 1, pp. 1-102, 2022.

A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE Journal on Selected Areas in Communica-
tions, vol. 21, no. 1, pp. 5-19, Jan. 2003.

J. Riely and M. Hennessy, “Trust and partial typing in open
systems of mobile agents,” J. Automated Reasoning, vol. 31,
no. 3, pp. 335-370, 2003.

M. Hennessy, J. Rathke, and N. Yoshida, “SAFEDPI: A language
for controlling mobile code,” Acta Informatica, vol. 42, no. 4,
pp. 227-290, 2005.

J. Siek and W. Taha, “Gradual typing for objects,” in 21"
European Conf. on Object-Oriented Programming, Jul. 2007,
pp. 2-27.

P. Wadler and R. B. Findler, “Well-typed programs can’t be
blamed,” in European Symposium on Programming, 2009.

T. Chen and J. G. Siek, “Quest complete: The holy grail of
gradual security,” Proc. ACM Program. Lang., vol. 8, no. PLDI,
Jun. 2024.

A. Bichhawat, M. McCall, and L. Jia, “Gradual security types
and gradual guarantees,” in 2021 IEEE 34th Computer Security
Foundations Symposium (CSF), 2021, pp. 1-16.

J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland,
“Refined criteria for gradual typing,” in Summit on Advances in
Programming Languages, 2015.

M. Patrignani, R. S. Wahby, and R. Kiinneman, “Universal
composability is secure compilation,” arXiv ePrint 1910.08634,
2019.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-

cross-chain-defi-site-poly-network-hacked-hundreds- of-millions-potentil By msegrity,” in Proceedings of the 12th ACM Conference on

10 Aug. 2021, accessed August 2023.

——, “Defi protocol LLFI struck by $IIM ex-
ploit,” https://www.coindesk.com/business/2024/07/16/
defi-protocol-lifi-struck-by-8m-exploit/, 16 Jul. 2024, accessed
October 2024.

J. B. Dennis and E. C. VanHorn, “Programming semantics for
multiprogrammed computations,” Comm. of the ACM, vol. 9,
no. 3, pp. 143-155, Mar. 1966.

L. Cardelli, “A semantics of multiple inheritance,” Information
and Computation, vol. 76, no. 2-3, pp. 138-164, 1988, also in
Readings in Object-Oriented Database Systems, S. Zdonik and
D. Maier, eds., Morgan Kaufmann, 1990.

P. Daian, “Analysis of the DAO ex-
ploit,” https://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/, 18 Jun. 2016, accessed March
2021.

S. Ren, C. Acay, and A. C. Myers, “An algebraic approach
to asymmetric delegation and polymorphic label inference,”
in European Symposium on Research in Computer Security
(ESORICS), Sep. 2025.

S. Zdancewic and A. C. Myers, “Secure information flow
and CPS,” in 10" European Symposium on Programming, ser.
Lecture Notes in Computer Science, D. Sands, Ed., vol. 2028.
Springer Berlin Heidelberg, 2001, pp. 46-61.

C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani, and
J. Thibault, “Journey beyond full abstraction: Exploring robust
property preservation for secure compilation,” in 32" IEEE

13

(31]

(32]

(33]

Computer and Communications Security, ser. CCS ’05. New
York, NY, USA: Association for Computing Machinery, 2005,
p. 340-353.

B. Niu and G. Tan, “Modular control-flow integrity,” SIGPLAN
Not., vol. 49, no. 6, p. 577-587, Jun. 2014.

L. Marchesi, L. Pompianu, and R. Tonelli, “Security checklists
for Ethereum smart contract development: patterns and best
practices,” Blockchain: Research and Applications, p. 100367,
2025.

F. Volland, “Solidity patterns: A compilation of patterns and best
practices for the smart contract programming language solidity,”
https://github.com/fravoll/solidity-patterns, 2019.

https://cointelegraph.com/news/dexibleapp-aggregator-hacked-for-2m-via-selfswap-function
https://cointelegraph.com/news/dexibleapp-aggregator-hacked-for-2m-via-selfswap-function
https://www.coindesk.com/markets/2021/08/10/cross-chain-defi-site-poly-network-hacked-hundreds-of-millions-potentially-lost
https://www.coindesk.com/markets/2021/08/10/cross-chain-defi-site-poly-network-hacked-hundreds-of-millions-potentially-lost
https://www.coindesk.com/business/2024/07/16/defi-protocol-lifi-struck-by-8m-exploit/
https://www.coindesk.com/business/2024/07/16/defi-protocol-lifi-struck-by-8m-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://github.com/fravoll/solidity-patterns

APPENDIX
A. Real World Static Semantics

Figure [10] shows the static semantics of the real world.
B. Type Safety
Lemma A.1 (Substitution).
Dyz:7ipcte:m A O;pckv:7 = Tipctefv/z}: T

Proof. By induction over typing derivation. O

Lemma A.2 (PC Anti-Monotonicity).

self .
top Fe:T

pc’ © pe AT pe; p; pe
= TI';pc’;p; pcfoeéf Fe:T
Proof. By induction over the typing derivation.

Lemma A.3 (Weakening).

T =Ty;To AT pes ps pejos!

self A
top Fe:T

Fe:T

= Ti;pc’sp; pe
Proof. By induction over the typing derivation.
Lemma A.4 (Let Congruence).

<6172at> - <€/17Z/at/>
= (let z =e;1 in e, 8, t) — (let z =€ in €}, X', t')

They also hold for {e} s.

Proof. By case analysis over the stepping derivation. O

Lemma A.5 (Progress). The following holds for A\;.:

}—P/\PI—Z/\I‘;pc;p;pcfszl,fl—e:T/\e;«év

= Je’. (e, X, t) — (!, ¥, 1)

They also hold for X}, (replace the respective — and —. by
— and —¢p).

Proof. We do induction over typing derivation of e.

Case T-ABORT e = abort. ABORT applies.

Case T-OP e = v1 ® vo. By typing rule, e; and ey are
bools. So OP applies.

Case T-LET e = let x = €' in e. In the case when
(e/,2,t) — (e',¥' '), the congruence lemma
applies. Otherwise, LET applies.

Case T-IF e = if v then e; else es. By typing rule, v is
a bool. So IF-TRUE or IF-FALSE applies.

Case T-DOWNGRADE e = by | {. DOWNGRADE applies.
Case T-READ e = read;,. READ applies.

Case T-WRITE e = write, (v). WRITE applies.

Case T-APP e = wv; [pc]vs. By typing rule, v; has
function type. So APP-REMOTE applies.

Case T-WRAPPER € {€¢/}p.;- In the case when
(e/,2,t) — (e',¥ '), the congruence lemma
applies. Otherwise, RETURN and the induction hypothesis
applies.

Case T-SUB e = e. The induction hypothesis applies.

!/

14

To show progress for A}, we need to show that one of ApP-
REMOTE-OK, APP-REMOTE-ABORT and APP-REMOTE-
CALLEE-ADV applies when APP-REMOTE applies in A,
and one of RETURN-POP and RETURN-CALLEE-ADV applies
when RETURN applies. This follows from the premises of the

rules, which exhaust all cases. O
Lemma A.6 (E-Preservation). The following holds for A\i.:
FPAPESAT; pe;p; pcfoell,f
Ale, B, t) —e (e, 2 1)
= F Y AT pe; p; pcfjf,f Fe' T

Fe:T

They also hold for X}, (replace the respective — and —, by
— and —>¢;).

Proof. We do induction over typing derivation of e. In all cases
except T-WRITE, taking a step does not change the store, so
F 3 holds by - X. Moreover, T-WRITE and T-READ are
immediately discharged because write;, (v) and read,, are not
in the stepping relation —..

e Case T-OP e = v; ® vy. Then it must be that v; = by,
by the interpretation function, and I'; pc - bg/i : booljy;,
which implies that booly, e, < bools,1i,. Preservation
holds by T-SUB.

Case T-LET e = let x = ¢’ in e. LET applies and ¢’ =
e{v/x}. Preservation holds by theorem

Case T-IF e = if v then e; else e5. By typing derivation,
T = 11 UTe Where e; have type 7;. IF-TRUE or IF-FALSE
apply and ¢’ = e; for some i. Let I'; pc - b : by, then
by typing derivation, we know I';pc LI/ F e; : 7;. By
theorem I';pc F e; : 7; holds. Rule IF-T or IF-F
apply.

Case T-DOWNGRADE e = by | £. DOWNGRADE applies
and the bool value remains well-typed.

Case T-READ e = read,,. Vacuously true.

Case T-WRITE e = write, (v). Vacuously true.

Case T-APP e f [pc]v. By the typing derivation,
e = p.f [pclo, Tspespypesod = f 2 (7 Per o,),
and T'; pc; p; pcfséf F v : 7. By the stepping derivation,
body(p.f) = ep.s. and &’ = {e, r{v/z}},.4 To prove the
goal, we do induction on the first typing judgment of the
following more general lemma:

Fop.f:(n To)e

7; A body(p.f) = ep s
= T;pe;pypciey F{eps{v/ateg : 7o

3 C-Trq o
}—P/\PI—Z/\F;pc;p;pcioell,f PeeaPlron

sel

/\F;pc;p;pctopfl—v:T/\T<

The proof only involves two cases

— Case T-FIELD. Case analysis on ¢ € A. By T-
SIGNATURE, in either case both the normal func-
tion and attacker’s function both type-checked with
the same type (i.e. x : Ti;p; (P, peiop) F epy -
T,). Preservation follows by T-WRAPPER and the-
orem theorem and the fact that pc is
irrelevant in type-checking values.

Base Type 7" =

1]0] bool | 7" — 7"

PCerIDCiop

B(1)=1 B(0)=0 B(bool;) = bool B(ne) = B(n) B(ne ——— np) = B(n) = B(n)
(- P
A-SIGNATURE
PCerIPCiop -
pt (1 To)p xz:B(r);pH e: B(1,)
PCerIDCi0p
Fp.f:m To 1= AL.€
44 I'pkEre:r"
A-FIELD
A-UNIT A-BooL gg:n:=ec€cP A-VAR A-ABORT
IpkE ():1 I'";p k" b, : bool I";pE"q.fo: B(n) I'a:7"ptz: 7" I";pk"abort:1
A-Op A-LET A-IF
I'";pE" v; : bool I'"pkErept7q I'az:m;pk e : 73 I'";pF" v : bool I'sptre; 7
I';pE" v1 ® vy : bool I';pFletx =€ ineg: 7y I'";pE"if v then ey else es : 7 LTy
A-WRITE
A-READ " pH v:r" B(T) < 7" A-DOWNGRADE
I";p+"read,, : B(7) I p k" write, (v) : 1 I';pk"v{¢: bool
A-AppP A-WRAPPER
I'pkF o :r =7, I'pE"vg o] I'pHe:7r"

" pE" vy [pelug = 7))

Fig. 10: Static

— Case T-SUB. By typing derivation, I'; pc; p; pcfszl,f F
PCeoPCyiop

p.f:7 and 7 % (1; To)¢, Which implies

’ /
pcez <lpctop

7 = (1] —— 7)), and 7, < type,. The
proof follows by induction hypothesis
The proof of this case follows as an instance of the
aforementioned lemma, with 7, < 7.

o Case T-WRAPPER e = {v}, r. RETURN applies and e =
v. Preservation holds by typing derivation and the fact
that pc is irrelevant in type-checking values.

To show preservation of —., for A},, we need to show
preservation for APP-REMOTE-CALLEE-ADV, RETURN-POP,
and RETURN-CALLEE-ADV, which runs a similar argument
as APP-REMOTE and RETURN.

O

Lemma A.7 (Preservation-Eval). The following holds for Ai.:

s pe;pipegey) = Ele] s

ANNT pc e 7T pc’;p; pctss;f Fe:r
= I";pc’;p; pcfg‘]l)f Fe':7)

= Dypespipess F B[] T

Proof. Induction over the evaluation context £
o Case [-]. The proof follows by the second assumption.

Iipt"{e}gq: 7"
semantics of A..

e Case let x = E in e. By the typing derivation, we get
F;pc;p;pcfsll,f F Ele] : 7/, and T’;I’;pc;p;pcfs]l)f =
Ele] : 7", and 7" < 7'. Preservation-Eval holds by T-
SuUB, T-LET, and the induction hypothesis.

o Case {E},. By the typing derivation, we get F'(q.g) =

PCeyIPCop , p
(74 To,Ax.€'), T, <X T, and =z
i3 43 45 PCyop - e’ : 7). Preservation-Eval holds by T-SUB
T-WRAPPER, and the induction hypothesis.
O
Lemma A.8 (Preservation). The following holds for \;.:
I—P/\PI—E/\F;pc;p;pcfs:f,f Fe:T
Ale, B, t) — (e, 3 1)
= PFY' AT pe;p; pcfoezl,f Fe 7
They also hold for X}, (replace the respective — and —. by
— and —>¢;).

Proof. We do induction over the stepping derivation. In all
cases except T-WRITE, taking a step does not change the store,
so F X’ holds by + X.
o Case EvAL-EXPR. Preservation follows by theorem
and theorem
o Case ABORT. Immediately holds as abort can always
type check.

15

ex e
teA car(BE)eAd CT(v)=C"(V)

Eq.g¢) =~ E[q .9}

L A cur(E) € A q.90=4q .gp
Eq.g¢) = E[q .9}

cr(E)e A v} = Clwy)
E[v1 va] = E vy v))]
other redex cases C‘(e) = Ct(e/)
v
Elei] = Eej]

Ellet x =ej in ex] ~ Ellet z = €} in ¢})

qgg A cur(E) € A q9=¢q.¢ Ele] ~ Ele]
El{elqql = E{e}q o]
Y~y < Vp,h
pg A = X(p.h) =Y (p.h) A
peA = S(H [p.h]) =Y (H [p.h])
B {(p.h =CT(v)) w=(p.h:=0)
wlc = .
w otherwise
t/ t=1tw, wc=¢
tle =qthwle t=tiw, wlc#e
€ t=c¢€
txet = tle="t|c

Fig. 11: A stronger trace equivalence.

Case READ. By theorem we want to show
self /

that TV;pc'sp; peyo,] B writey, (v) T -
F’;pc/;p;pcfséf F () : 7/, where X(p.h) = v, and
R(p.h) = 7'. By T-STORE, read, is type-checked by

the corresponding type in I, which proves the claim.

Case WRITE. By theorem we want to show that
I";pc';p;pcfoe]lgf Fowrite, (v) : 1 = I"; pc’; p; pcfszl,f -
() : 1. The claim holds due to T-WRITE and T-UNIT.

To show preservation for A\}., we need to show preservation

for all APP-REMOTE-OK and APP-REMOTE-ABORT. They
run the same argument as APP-REMOTE above. O

C. Proof of Type Confusion

We prove type confusion using the following unwinding
lemmas for —, and —, respectively. We use a stronger trace
equivalence relation ~ defined in fig. [[T] Expressions

Theorem A.9 (One Step Type Confusion Security). Type
confusion security between M\i. and], for all well-typed

16

programs holds for — .

FPAPEYXAANPEY fi, AX A~ i

Dipespibbeq:mqa Nec=ep ANtgxtp A

{ec, Y, locks, tc) =, {ec, X, locks', tp) =

Je'n X thh, lep, Xp,tp) =" (€, X, th) Aep ~ epA
o= Xp ANtg ~th

Proof. We do case analysis over the stepping relation of the
real world —,..

o Case EVAL-EXPR. By the typing derivation, ec = F [e],
e = Ee], and (e, X¢,tc) —er (€, X0, tr). We want
to find €/, such that (S'[E[e]]Ep,tp) — €. We do
induction over the stepping relation of the real world
—er. All except WRITE have ¥ = Xp = Yo = X

- Case OP. By the typing derivation, e, = v[®]v/,
which implies that v = b;, v = b;,, and, as a conse-
quence, ep = b;®b;.. Similarly, by typing derivation,
tc = tp and £, = ¢ ~ Xp (following a similar
argument as above that most of the —,. rules do not
change X. By theorem [A.T1] and theorem [A.T2] the
case holds by EVAL-EXPR and OP.

Case IF-T and IF-F. Similar as above.

Case DOWNGRADE. Note that S=[ec]S" [be ¢ |] =

bt = ep, and X and tc do not change. The case

holds by taking zero step.

Case LET. We first note a fact that translation (S*[e])

and substitution (e{v/xz}) are commuting:

S'le{v/a}] = S [el{S [v]/=}

The proof of this fact involves induction over the
expression e, and the fact that translation is idempo-
tent.

For the case, by typing derivation, S‘[let = =
vine] = let x = S[v] in S’[e]. By the above
lemma, e/, = FE[S‘[e{v/x}]], which proves the
claim using theorem [A.T1] and theorem [A.12]

Case RETURN-POP. By typing derivation, ¢ ¢ A,
t = to;ret(q), en v, and ec = {v},q. By
definition, S*[{v},. 4] = {S*[v]}4.4- Because C' (v
is also value. Let ¢/, = E[S[v]]. By theorem
and theorem[A.12] the case is proven by EVAL-EXPR
and RETURN. RETURN-CALLEE-ADV follows the
same proof structure.

e Case ABORT. This case holds by taking one step using
theorem [A.11] theorem [A.12]

« Case READ. By typing derivation, cur(E) = p, ¥(p.h) =
v, ec = E[read,], and e, = E [v]. By assumption, ep
will equal to some FE’[read,], where H*[p.h] = pa.h'.
Let €/, = E'[v'], where ¥/, (p, h) = v’. The case holds
by the assumption that Yo ~ Xp. t; = tc = tp = t/p,
and ey, ~ e, by theorem and theorem

Case WRITE. By typing derivation, cur(E) = p, ¥’
Yph—=o], t = t;(p.h = v), e¢ = E|write,(v)],
and e, = E[()]. By assumption, ep will equal to some

E'|writey, (v)], where H [p.h] = pa.h’. Let e/, = E'[()],
where ¥, = YXp [pa.h/ — v]. Then X, =~ ¥/,. Also,
ty, ~ t', by definition, and e}, ~ e, by theorem
and theorem [A. 12

Case APP-REMOTE-CALLEE-ADV

ec = v1 vy where v = q.gy, .

ec = {e{va/x}}q.q se is the body of g.g. Let

ep = v} [T]v). This function takes one step to

epn = {e/{vh/x}}qy .o 3¢ is body of v] = q’.gé,l.

It remains to show {e{vs/x}}q4 ~ {€{vy/x}}q g
Because ¢ € A holds by premise of APP-REMOTE-
CALLEE-ADV, by definition of ~ and commutivity of ~
and substitution we only need to show C' (v;) = CT (v}).
This holds in general by definition of ~.

Case APP-REMOTE-OK.

ec = v1 vy where v = q.gy, .

er = {e{va/x}}q4 ;e is the body of ¢.g. Let

ep = v} [T]vh. This function takes one step to

e = {e/{vy/x}}q .o i€’ is body of v] = q’.gé/l. Let the

. PCerIPCiop
signature of v; be 7; o-

It remains to show {e{vo/x}}q 4 = {e/{vy/2}}y ¢
Because ¢ ¢ A holds by premise of APP-REMOTE-OK,
by definition of ~ we need to show:

(Hq'.g" = C*(q.9), 2) e = €’ and (3) vy = V).

Case on if cur(E) = p € A or not.

- cur(E) € A. Note that by premise of APP-REMOTE-
OK, ¢ =T, so S-AUTOENDORSE-SUCCESS applies
for ¢’. By definition of ~ and S-AUTOENDORSE-
SUCCESS , we have v, = C(v;), which proves (1)
and (2).

Since cur(E) € A, 5 € A by typing derivation of
the body of ¢.g. (3) holds by definition of ~.

- cur(E) ¢ A. We first case on /;:

x {1 ¢ A. In this case v; = v] and S-ORIGINAL
applies. (1) and (2) hold. (3) holds by another
casing over the label of vs.

x {1 € A. By definition of =~ and S-HIGH, we have
CT(v;) = CT(v}). Then by definition of =, (1),
(2), and (3) all hold.

Case APP-REMOTE-ABORT

ec = v1 vy where v = q.gy, .

ey, = abort. Let

ep = v} [T]vh. This function takes one step to

epn = {e{vy/x}}y o € is body of v) q’.gé/l. We

need to show that ¢/ = abort. Let the signature of v; be
pcerqpctop

T; 0

By premise of APP-REMOTE-ABORT, either pc., € A
or £ = T holds. In the first case ¢’ takes the body of
S-HIGH and in the second case the body takes of S-
AUTOENDORSE-ABORT. It aborts in both cases.

O

Theorem A.10 (Type Confusion Security). Type confusion se-

17

curity holds between \i. and \i. for all well-typed programs.

FPAPEYXANANPEY i, A\ 4= X 4N
Dipespilbeq:ma Nec=ep ANtoxtp A
(ec, X, locks, tc) —, {ec, X, locks' tp) =
Je'n X th, lep, Xp,tp) =" (€, Xp, th) Aep ~ epA
Yo=Y Ate =t
Proof. Induction on reflexive, transitive closure of the step.

The claim vacuously holds for the reflexive case. For inductive
case, we apply theorem [A.9]and the induction hypothesis. [

Lemma A.11 (Translation of Evaluation Context). The follow-
ing holds for translation of expression and evaluation context:

Ve E,3E',S'[E [e]] = E'[S[e]]

Proof. Induction on E. We present here the LET case.

e Case E let x = E’ in ¢/. Therefore, S‘[E[e]] =
let = S[E'[e]] in €. By induction hypothesis, there
exists E” such that S/[E"[e]] = E"[S’[e]]. Let E’
let x = E” in €’ proves the claim.

O

Lemma A.12 (Uniqueness of Translation of Evaluation Con-
text). The following holds for translation of expression and
evaluation context:

V61 €9 FE E1 Eg,
S'[Eler]] = Er[S*[ea]]A
S'[Blea]] = EalS'[esl]

— F; = F

Proof. Induction on E. This holds true because S‘[-] is a
function. O

Lemma A.13 (Well-typed Translation). Let C(p.f) = pa.g*,
JF(p.f) = (n,\v.e) and ,F(pa.g°) = U [n], \z.€'). Let n =

PCeqaWCiop

Ti To. Then:

ziTpFle:T = o U R T T 4R U]

Proof. We do induction over the translation S|-].

PCeyAPCyopLIE
o Case B-FIELD-DEF Let U‘[r] = (1, ——2—

and U'[ro] = 7.

We need to show the following: pc U { E pc,,, pc,, C
PCiop UL U p, pci(f;)f C pcyp and 7 < 7. Note that
Peey =L =pc=p=pcy, =T, 7 =U"[r] =7 So
all four conditions hold.

Case B-UNIT, B-BooL, B-FIELD, B-VAR hold by typ-
ing derivation of .

Case B-ABORT.

Case B-OpP, B-LET, B-ENDORSE. Holds by inductive
hypothesis and typing derivation of ;..

Case B-IF e = if v then e; else ey. Since the guard is
downgraded to p4 the branches also type check under
the pc pa. Holds by inductive hypothesis and typing
derivation of \;..

TO)T

o Case B-READ. To show this is well-typed, we need to
show pc C Ibl(7). This follows from the definition of
C*(p.h) which ensures Ibl(7') = T = pc.

+ B-WRITE. To show II - writece(, ;) (v) : 7, we need to
show 7" < 7 and pc C Ibl(7). This holds by definition of
C*(p.h) and translation of values.

e« Case B-ApP By theorem let Un] =

C e IDCyop UL
(7: Pleetor 7)1 and U] = 7.
We need to show the following: pc U ¢ T pec,,, PCop T

PCiop UL U P, pcfgzl,f C pcyp and 7 < 7. Note that
1
PCey = = pc=p=T, DPCiop = 4 UL, pcispf =%
7 =U"'[r] = 7; So all four conditions hold.
o Case B-WRAPPER

Then we show that all attacker functions are well-typed.
This requires shoing 7 < 7,. Case 1 AT-SIGNATURE-TOP:
holds by definition of U*[-]. Case 2 AT-SIGNATURE-EX:
Same. O

Lemma A.14 (Simulation Relation).
tet = tmgt
Proof. By induction over the definition of ~. O

Lemma A.15 (Reentrancy Security, Real World). Ar any
point of the execution, if a trusted function calls an untrusted
function, then all functions called after that are also untrusted.

<{6}PA-main7 Ev ()> - <€/, Ea t> A
stack(t) = p1.fi,. .., pn-fn =
Ji<jel,n].p;¢ A NpicA = Vkel[jnl.ppcA
Proof. By theorem and the definition of —". O
Lemma A.16 (Lock).
({€}pa.main, 2, locks, ()) =" (e’, %, locks’, t)
A stack(e’) = p1.fi,...,Pn-fn = locks’ # ()

Proof. Note that the lock list only contains labels of trusted
functions. The lemma hold by induction over the operational
semantics. O

18

APPENDIX

19

	Introduction
	Motivation
	Confused Deputy Attacks
	Reentrancy Attack
	Type Confusion and IFC background
	IFC Label Model
	IFC Function Signatures
	Type Confusion of IFC Function Types

	The Simple Cases of Type Confusion
	Nested Type Confusion
	Base Type Confusion

	Formalizing Type Confusion
	The Decentralized World Model
	Type Confusion Security

	A core calculus for type confusion
	Syntax
	Attackers
	Dynamic Semantics
	Static Semantics
	The Real World

	Type Confusion Security
	Base Type Confusion
	Examples Revisited
	The CDA Attack
	The Reentrancy Attack

	Applications
	Confused Deputy Attacks
	Reentrancy Attack
	Noninterference

	Related Work and Discussion
	Partial Typing in Open Systems
	CDA and Capability Systems
	Reentrancy Security
	Gradual Typing
	Real–Ideal Simulation
	Control Flow Integrity (CFI)
	Smart Contract Security

	Conclusions
	Appendix
	Real World Static Semantics
	Type Safety
	Proof of Type Confusion

	Appendix

